Inhaltsverzeichnis

Vorwort zur 4. Auflage V
Charakterisierung von Analysenmethoden
Verzeichnis der Symbole 2
Rechtliche Grundlagen zur Qualitätskontrolle von Arzneimitteln 3
1 Über den sinnvollen Umgang mit Messwerten und Messergebnissen 11
1.1 Ermittlung von Messwerten 11
1.2 Berechnung von Messergebnissen 13
2 Validierung und Kalibrierung 15
2.1 Validierung von Analysenverfahren 15
2.1.1 Qualitätsmerkmale für Analysenverfahren 16
2.1.2 Erfassung und Bestimmung der Qualitätsmerkmale für Analysenverfahren 20
2.1.3 Durchführung von Validierungen in der pharmazeutischen Analytik 30
2.2 Kalibrierung von Messgeräten 33
2.2.1 Empfindlichkeit von Messgeräten 34
2.2.2 Nachweisgrenze bzw. Bestimmungsgrenze bei Messgeräten 35
2.2.3 Bestimmungsgrenze bei Messgeräten 36
2.3 Abschätzung von Gesamtfehlern, Fehlerfortpflanzung 36
Optische und spektroskopische Analysenmethoden
3 Einführung in die optischen und spektroskopischen Analysenmethoden 41
3.1 Licht als elektromagnetische Wellenbewegung 42
3.2 Energie der elektromagnetischen Wellen 43

M. NeugebauerG. Rücker
H. Blasius
G. Rücker
3.3 Spektrum der elektromagnetischen Wellen, Spektralbereiche 43
3.4 Lichtabsorption und Farbe 46
3.5 Übersicht über die spektroskopischen Analysenmethoden 46
3.5.1 Atomspektroskopie und Molekülspektroskopie 47
3.5.2 Emissionsspektroskopie und Absorptionsspektroskopie 47
4 Refraktometrie 48
4.1 Grundlagen der Refraktometrie 48
4.2 Messung der Brechzahl 49
4.2.1 Grenzwinkel der Totalreflexion 49
4.2.2 Abbe-Refraktometer 50
4.3 Anwendungen der Refraktometrie in der Pharmazie 51
5 Chiroptische Analysenmethoden 53
5.1 Polarimetrie 53
5.1.1 Grundlagen der Polarimetrie 53
5.1.2 Messung der optischen Drehung 56
5.1.3 Anwendungen der Polarimetrie in der Pharmazie 60
5.2 Zirkulardichroismus 62
5.2.1 Wirkung von zirkular polarisiertem Licht auf optisch aktive Substanzen 62
5.2.2 Definition des Zirkulardichroismus 63
5.2.3 Messgrößen für den Zirkulardichroismus 65
5.2.4 Geräte zur Messung des Zirkulardichroismus 67
5.2.5 Anwendung des Zirkulardichroismus zur Untersuchung der Stereochemie von Arzneistoffen 68
5.2.6 Qualitätskontrolle von Arzneistoffen 69
5.2.7 Anwendungen im Arzneibuch 69
5.3 Optische Rotationsdispersion, Cotton-Effekt 69
5.3.1 Normale optische Rotationsdispersion 70
5.3.2 Anomale Rotationsdispersion, Cotton-Effekt 70
6 Einführung in die atomspektroskopischen Analysenmethoden 72
6.1 Thermische Anregung von Atomen 72
6.2 Vorgänge in der Flamme 73
6.3 Elektronenanregung und Lichtemission des Natriums 74
7 Spektralanalyse 75
7.1 Prinzip der Spektralanalyse 75
7.2 Messgeräte zur Spektralanalyse 75
7.3 Anwendungen der Spektralanalyse in der Pharmazie 76
8 Atomemissionsspektroskopie, Flammenphotometrie 77
8.1 Prinzip der Flammenphotometrie 77
8.1.1 Quantitative Auswertung der Lichtemission 77
8.2 Messgeräte zur Flammenphotometrie 79
8.3 Anwendungen der Flammenphotometrie in der Pharmazie 80
9 Atomabsorptionsspektroskopie 84
9.1 Grundlagen der Atomabsorptionsspektroskopie 84
9.1.1 Lichtabsorption durch Atome, Resonanzabsorption 84
9.1.2 Messgrößen der Atomabsorptionsspektroskopie 85
9.2 Messgeräte zur Atomabsorptionsspektroskopie 85
9.3 Anwendungen der Atomabsorptionsspektroskopie in der Pharmazie 87
10 Einführung in die Molekülspektroskopie 91
10.1 Wechselwirkungen von Licht mit organischen
Molekülen 91
10.1.1 Ionisation 92
10.1.2 Elektronenanregung 93
10.1.3 Molekülschwingungen 94
10.1.4 Molekülrotationen 94
10.2 Absorptionsspektrum, Absorptionsbanden 95
10.3 Messgrößen für die Lichtabsorption 96
10.3.1 Transmission 97
10.3.2 Absorption 97
10.4 Lambert-Beer'sches Gesetz 98
10.4.1 Bouguer-Lambert'sches Gesetz 98
10.4.2 Beer'sches Gesetz 98
10.4.3 Kombiniertes Bouguer-Lambert-Beer'sches Gesetz, molarer Absorptionskoeffizient 98
10.4.4 Anwendungen des Lambert-Beer'schen Gesetzes 99
10.4.5 Herleitung des Lambert-Beer'schen Gesetzes 100
10.5 Grundsätzlicher Aufbau von Absorptionsspektrometern 101
11 UV-Vis-Spektroskopie 104
11.1 Grundlagen der UV-Vis-Spektroskopie 104
11.1.1 Chromophores System, Elektronenübergänge 104
11.1.2 Jablonski-Termschema 104
11.1.3 Verbotene Elektronenübergänge 106
11.1.4 Aussehen der Absorptionsbanden, Feinstruktur 106
11.2 Chromophore aus π-Elektronen 108
11.2.1 Alkene, Polyene 108
11.2.2 Alkine 112
11.2.3 Aromaten 113
11.2.4 Unterscheidung von Polyenen, Polyinen und Aromaten 115
11.3 Chromophore aus π - und n-Elektronen 115
11.3.1 Gesättigte Carbonylverbindungen 116
11.3.2 Ungesättigte Carbonylverbindungen 116
11.3.3 Heterocyclische Verbindungen 120
11.3.4 Substanzen mit mehreren voneinander unbabhängigen Chromophoren 121
11.4 Anwendungen der UV-Vis-Spektroskopie in der Pharmazie 122
11.4.1 Durchführung von Messungen im UV-Vis-Bereich 122
11.4.2 Anwendung der UV-Vis-Spektroskopie zur Strukturaufklärung 131
11.4.3 Anwendung der UV-Vis-Spektroskopie zur Analyse von Arzneimitteln 133
11.4.4 Photometrische Bestimmung von Arzneistoffen in Gemischen; Mehrkomponentenanalysen 144
11.4.5 Charge-Transfer-Spektren 147
11.4.6 Photometrische Bestimmungen in biologischem Material 148
11.4.7 Stabilitätsuntersuchungen an Arzneistoffen 154
11.4.8 Differentialspektroskopie, Derivativspektroskopie, Ableitungsspektroskopie 154
11.4.9 Untersuchung von Reaktionsabläufen, Isosbestische Punkte 157
12 Fluorimetrie 166
12.1 Grundlagen der Fluorimetrie 166
12.1.1 Anregungsspektrum und Fluoreszenzspektrum 166
12.1.2 Fluoreszenzintensität 168
12.1.3 Fluoreszenz und Struktur 169
12.2 Messung der Fluoreszenz 170
12.2.1 Messgeräte 170
12.2.2 Lösungsmittel 171
12.2.3 Lumineszenzminderung zur Detektion von Substanzen auf der Dünnschichtplatte 172
12.3 Anwendungen der Fluorimetrie in der Pharmazie 172
12.3.1 Identitätsprüfung von Arzneistoffen 173
12.3.2 Reinheitsprüfung von Arzneistoffen 173
12.3.3 Gehaltsbestimmung von Arzneistoffen 174
12.3.4 Analyse von biologischem Material 175
12.3.5 Kopplungen der Fluorimetrie mit chromatographischen Verfahren 176
12.4 Lumineszenzmethoden durch andere Anregungsarten 176
12.4.1 Chemilumineszenz 176
12.4.2 Röntgenfluoreszenzspektroskopie 177
13 IR-Spektroskopie, Raman-Spektroskopie 178
13.1 Prinzip der IR-Spektroskopie 178
13.2 Grundlagen der IR-Spektroskopie 178
13.2.1 Infraroter Bereich des Spektrums der elektromagnetischen Wellen 178
13.2.2 Molekülschwingungen 179
13.3 Praktische IR-Spektroskopie 185
13.3.1 IR-Spektrum 185
13.3.2 IR-Spektrometer 186
13.3.3 Messung von IR-Spektren 187
13.3.4 Charakterisierung der Molekülschwingungen 193
13.4 Anwendungen der IR-Spektroskopie in der Pharmazie 195
13.4.1 Kontrolle und Optimierung von IR-Spektrometern nach dem Arzneibuch 195
13.4.2 Strukturaufklärung 196
13.4.3 Analyse von Arzneimitteln 211
13.4.4 IR-Spektroskopie in der toxikologischen und biochemischen Analyse 215
13.4.5 Untersuchung der Stabilität von Arzneistoffen 215
13.5 Nicht-dispersive IR-Spektroskopie, NDIR-Spektroskopie 216
13.6 Spektroskopie im Nahen IR-Bereich, NIR-Spektroskopie 217
13.7 Raman-Spektroskopie 221
13.7.1 Prinzip der Raman-Spektroskopie 221
13.7.2 Raman-Effekt 221
13.7.3 Anwendung der Raman-Spektroskopie 222
$14 \quad{ }^{1} \mathrm{H}$-NMR-Spektroskopie 225
14.1 Prinzip der Kernresonanzspektroskopie 225
14.1.1 Kernspin und magnetisches Moment von Atomkernen 226
14.2 Grundlagen der ${ }^{1} \mathrm{H}$-NMR-Spektroskopie 228
14.2.1 Verhalten der Wasserstoffkerne im Magnetfeld Kreiselmodell 228
14.2.2 Energieniveaus der Wasserstoffkerne im Magnetfeld 229
14.2.3 Larmor-Gleichung 231
14.2.4 Besetzungsunterschied und Magnetisierung 231
14.2.5 Kernresonanz, Quermagnetisierung und Kerninduktion 232
14.2.6 Relaxation und Relaxationszeit 234
14.2.7 Messung der Kernresonanz 235
$14.3{ }^{1} \mathrm{H}$-NMR-Spektrum 240
14.3.1 Chemische Verschiebung 240
14.3.2 Integrationskurve 249
14.3.3 Spin-Spin-Kopplung 250
14.4 Anwendungen der ${ }^{1} \mathrm{H}$-NMR-Spektroskopie in der Pharmazie 264
14.4.1 Kontrolle und Optimierung des ${ }^{1} \mathrm{H}-\mathrm{NMR}$ - Spektrometers nach dem Arzneibuch 265
14.4.2 Durchführung von ${ }^{1} \mathrm{H}-\mathrm{NMR}$-Messungen nach dem Arzneibuch 266
14.4.3 Strukturaufklärung 266
14.4.4 Konformationsanalyse von Arzneistoffen 272
14.4.5 Untersuchungen des Zustandes von Arzneistoffen in Lösung 273
14.4.6 Identifizierung und Reinheitsprüfung von Arzneistoffen 278
14.4.7 Untersuchungen über Struktur und Wirkung von Arzneistoffen 278
$15 \quad{ }^{13}$ C-NMR-Spektroskopie 280
15.1 Prinzip der ${ }^{13} \mathrm{C}$-NMR-Spektroskopie 280
15.1.1 Resonanzfrequenz der ${ }^{13} \mathrm{C}$-Atome 280
15.2 Chemische Verschiebung der ${ }^{13} \mathrm{C}$-Atome 280
15.2.1 Einfluss des Hybridisierungsgrades 281
15.2.2 Substituenteneinflüsse und γ-Effekt 282
15.2.3 Einfluss der Elektronendichte 284
15.2.4 Inkrement-Regeln zur Abschätzung von ${ }^{13} \mathrm{C}$-Verschiebungen 285
15.3 Spin-Kopplungen 294
15.3.1 ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-Kopplungen 295
15.3.2 Andere heteronukleare Kopplungen 296
15.4 Entkopplungsverfahren in der ${ }^{13} \mathrm{C}$-NMR-Spektroskopie 297
15.4.1 Protonen-Breitband-Entkopplung 297
15.4.2 Protonen-Off-Resonance-Entkopplung 298
15.4.3 Selektive ${ }^{1} \mathrm{H}$-Entkopplungen 298
15.4.4 Gepulste Protonen-Entkopplung 298
15.5 Integration von ${ }^{13} \mathrm{C}$-Signalen 300
$15.6 \quad{ }^{13} \mathrm{C}$-NMR-Spektroskopie durch Pulsfolgen 300
15.6.1 Eindimensionale (1D)- ${ }^{13} \mathrm{C}$-NMR-Spektroskopie 301
15.6.2 Zweidimensionale (2D)- ${ }^{13} \mathrm{C}$-NMR-Spektroskopie 302
15.7 Anwendungen der ${ }^{13} \mathrm{C}$-NMR-Spektroskopie in der Pharmazie 304
15.8 NMR-Spektroskopie zur Untersuchung lebender Gewebe 305
15.8.1 Klinische NMR-Spektroskopie, In-vivo-Spektroskopie 305
15.8.2 ${ }^{1} \mathrm{H}$-NMR-Tomographie, Kernspin-Tomographie. Protonen-Imaging (MRT, MRI) 307
16 Massenspektrometrie 309
16.1 Prinzip der Massenspektrometrie 309
16.1.1 Grundvorgänge der Massenspektrometrie 309
16.1.2 Masseneinheiten 310
16.2 Grundlagen der Massenspektrometrie durch Elektronenstoß-Ionisation EI-Massenspektrometrie 311
16.2.1 Ionisierung durch Elektronenstoß - Bildung von Molekülionen 312
16.2.2 Zerfall der Molekülionen; Fragmentierung 313
16.2.3 Massenspektrum 317
16.2.4 Aufbau des EI-Massenspektrometers 318
16.2.5 Fragmentierungsreaktionen in der EI-Massenspektrometrie 324
16.3 Anwendung der EI-Massenspektrometrie zur Strukturaufklärung 334
16.3.1 Interpretation von EI-Massenspektren 334
16.3.2 Formulierung massenspektrometrischer Zerfallsreaktionen 341
16.3.3 Verlauf der Auswertung von EI-Massenspektren 345
16.4 Massenspektrometrie mit anderen Ionisationsmethoden 348
16.4.1 Weiche Ionisationsmethoden 348
16.4.2 Ionisation schwer verdampfbarer Verbindungen 350
16.5 Massenspektrometrie mit anderen Methoden der Ionentrennung 355
16.5.1 Elektrostatische Analysatoren 355
16.5.2 Quadrupol-Analysatoren 356
16.5.3 Flugzeit-Analysatoren 356
16.5.4 Ion-Trap-Massenspektrometrie 357
16.5.5 Ionen-Zyklotron-Resonanz-Analysatoren 359
16.6 Spezielle Methoden der Massenspektrometrie 359
16.6.1 Doppelt fokussierende Massenspektrometrie 359
16.6.2 Kombination mehrerer Analysatoren 360
16.7 Anwendungen der Massenspektrometrie in der Pharmazie 362
16.7.1 Identifizierung von Arzneistoffen;
Kopplung der Massenspektrometrie mit chromatographischen Trennverfahren 362
16.7.2 Nachweis stabiler Isotope zur Untersuchung biologischer Reaktionen 369
17 Radiochemische Analysenverfahren 371
17.1 Grundlagen radiochemischer Messmethoden 371
17.1.1 Zerfallsgesetz und Halbwertszeit 371
17.2 Messgrößen für radioaktive Strahlung 373
17.3 Messgeräte zur Messung radioaktiver Strahlung 374
17.3.1 Ionisationsdetektoren 374
17.3.2 Szintillationsdetektoren 378
17.3.3 Halbleiterzähler 379
17.4 Gammaspektrometrie 380
17.5 Anwendung radiochemischer Analysenmethoden in der Pharmazie 381
17.5.1 Analytik von Radiopharmaka 381
17.5.2 Isotopenverdünnungsanalyse 383
17.5.3 Radioimmunoassay 384
17.5.4 Markierung von Verbindungen durch Radionuklide 385
17.5.5 Neutronenaktivierungsanalyse 386
17.5.6 Medizinische Anwendungen 386
III Chromatographische AnalysenmethodenM. Neugebauer
Verzeichnis der Symbole 390
18 Einführung in die chromatographischen Methoden 391
18.1 Chromatographische Trennmechanismen 393
18.2 Chromatographische Symbole und Kenngrößen 397
18.2.1 Retentionsdaten 398
18.2.2 Kenngrößen zur Beschreibung von Peakform und Trennqualität 401
18.2.3 Quantitative Kenngrößen und Methoden 410
18.2.4 Zusammenfassung: Parameter zur Beschreibung von Chromatogrammen 413
18.3 Häufig verwendete Abkürzungen 414
19 Gaschromatographie 416
19.1 Prinzip der Gaschromatographie 416
19.2 Aufbau des Gaschromatographen 417
19.2.1 Probenaufgabesysteme 418
19.2.2 Trennsäulen 421
19.2.3 Detektoren 428
19.2.4 Signalregistrierung, Integratoren 432
19.3 Durchführung gaschromatographischer Analysen 433
19.3.1 Auswahl der Trennbedingungen 433
19.3.2 Praktische Durchführung 436
19.3.3 Derivatisierungen 436
19.4 Auswertung des Gaschromatogramms 438
19.4.1 Retentionsindizes 438
19.4.2 Quantitative Bestimmungen 440
19.5 Anwendung der Gaschromatographie in der Pharmazie 443
19.5.1 Anwendungen der Gaschromatographie im Arzneibuch 443
20 Hochleistungs-Flüssigchromatographie 446
20.1 Prinzip der Hochleistungs-Flüssigchromatographie 446
20.2 Aufbau von Geräten zur Hochleistungs-Flüssig- chromatographie 448
20.2.1 Elutionsmittel 450
20.2.2 Pumpen 451
20.2.3 Gradientenmischer 451
20.2.4 Probeneinlasssystem 452
20.2.5 Trennsäulen 453
20.2.6 Säulenfüllung und Trennmaterialien 454
20.2.7 Detektoren 457
20.3 Durchführung flüssigchromatographischer Analysen 460
20.3.1 Die Trennverfahren der Hochleistungs- Flüssigchromatographie 460
20.3.2 Auswahl der Trennbedingungen 467
20.3.3 Elutionsgeschwindigkeit 468
20.3.4 Temperatureinflüsse 469
20.3.5 Elutionsmittelgradienten 469
20.4 Anwendungen der Hochleistungs-Flüssig- chromatographie in der Pharmazie 470
20.4.1 Anwendungen der Hochleistungs-Flüssig- chromatographie im Arzneibuch 471
21 Dünnschichtchromatographie 474
21.1 Prinzip der Dünnschichtchromatographie 474
21.1.1 Geräte und Materialien zur Durchführung der Dünnschichtchromatographie 475
21.1.2 Durchführung der Dünnschichtchromatographie 478
21.1.3 Anwendung der Dünnschichtchromatographie in der Pharmazie 482
21.2 Prinzip der quantitativen Dünnschicht- chromatographie 484
21.2.1 Messgeräte und Messprinzip der quantitativen Dünnschichtchromatographie 485
21.2.2 Durchführung quantitativer, dünnschicht- chromatographischer Messungen 486
21.2.3 Fehlermöglichkeiten 490
21.2.4 Anwendung der quantitativen Dünnschicht- chromatographie in der Pharmazie 491
Elektrochemische Analysenmethoden
Verzeichnis der Symbole 494
22 Allgemeine Einführung in die Elektrochemie 498
22.1 Elektrodenvorgänge 498
22.2 Elektrodenpotentiale; Nernst'sche Gleichung 500
22.3 Arten von Elektroden 502
22.3.1 Metall(ionen)elektroden 502
22.3.2 Gaselektroden 505
22.3.3 Redoxelektroden 506
22.4 Elektrochemische Zellen 507
22.4.1 Aufbau der galvanischen Zelle 508
22.4.2 Spannung der galvanischen Zelle; Elektrochemische Spannungsreihe 509
22.4.3 Elektrolytische Umsetzungen 512
22.4.4 Elektrolytische Leitfähigkeit 520
22.4.5 Anhang: Ein Ersatzschaltbild der elektrochemischen Zelle 524
23 Potentiometrie 527
23.1 Grundlagen der Direktpotentiometrie 527
23.1.1 Messung von pH -Werten 528
23.1.2 Konzentrationsbestimmungen mit ionenspezifischen Elektroden 532
23.2 Durchführung direktpotentiometrischer Messungen 537
23.3 Grundlagen potentiometrischer Titrationen 539
23.3.1 Säure-Base-Titrationen 540
23.3.2 Fällungstitrationen 542
23.3.3 Komplexometrische Titrationen 545
23.3.4 Redoxtitrationen 545
23.4 Durchführung potentiometrischer Titrationen 548
23.5 Pharmazeutische Anwendungen potentiometrischer Titrationen 552
24 Elektrogravimetrie 559
24.1 Grundlagen der Elektrogravimetrie 559
24.2 Instrumentelle Anordnung und Durchführung elektrogravimetrischer Bestimmungen 563
24.3 Anwendungsbereich der Elektrogravimetrie 565
25 Coulometrie 568
25.1 Grundlagen der Coulometrie 569
25.2 Durchführung coulometrischer Bestimmungen 572
25.3 Instrumentelle Anordnung 573
25.4 Anwendungen der Coulometrie 575
26 Voltammetrische Verfahren; Polarographie 578
26.1 Einführung in die Voltammetrie und Polarographie 578
26.2 Grundlagen der Voltammetrie 582
26.2.1 Grundlagen der Gleichspannungspolarographie 582
26.2.2 Grundlagen der Voltammetrie an stationären Elektroden 586
26.2.3 Der voltammetrische Grundstrom 587
26.2.4 Auswertung voltammetrischer Strom-Spannungs- Kurven; Simultanbestimmungen 590
26.2.5 Voltammogramme bei nichtreversiblen Elektrodenvorgängen 591
26.2.6 Cyclische Voltammetrie 593
26.3 Durchführung voltammetrischer Bestimmungen 594
26.3.1 Voltammetrische Zellen 594
26.3.2 Instrumentelle Anordnung 596
26.3.3 Experimentelle Durchführung 597
26.4 Anwendungen der Voltammetrie 597
26.4.1 Voltammetrie anorganischer Substanzen 598
26.4.2 Voltammetrie organischer Verbindungen 601
26.4.3 Voltammetrie in der pharmazeutischen Analytik 609
26.5 Anhang: Spezielle voltammetrische Verfahren 610
26.5.1 Inverse Voltammetrie 610
26.5.2 Pulsverfahren 611
26.5.3 Wechselspannungsvoltammetrie 613
27 Amperometrie und Voltametrie 617
27.1 Einführung in die amperometrischen und voltametrischen Indizierungsverfahren 617
27.2 Grundlagen und Anwendungsbereiche der amperometrischen und voltametrischen Verfahren 619
27.2.1 Amperometrie mit einer Indikatorelektrode 619
27.2.2 Amperometrie mit zwei Indikatorelektroden 624
27.2.3 Voltametrie mit einer Indikatorelektrode 628
27.2.4 Voltametrie mit zwei Indikatorelektroden 629
27.3 Durchführung amperometrischer und voltametrischer Titrationen mit einer und mit zwei Indikatorelektroden 631
27.3.1 Messanordnungen und experimentelle Durchführung 631
27.3.2 Elektroden und Zellen 632
27.3.3 Durchführung amperometrischer Methoden des Arzneibuchs 633
27.4 Pharmazeutische Anwendungen amperometrischer und voltametrischer Indizierungsmethoden 635
28 Konduktometrie 638
28.1 Grundlagen der Konduktometrie 638
28.2 Durchführung konduktometrischer Messungen 639
28.2.1 Instrumentelle Anordnung 640
28.2.2 Messzellen 640
28.3 Anwendungen der Konduktometrie 642
28.3.1 Absolute Leitfähigkeitsmessungen 642
28.3.2 Konduktometrische Titrationen 642
29 Elektrophoretische Verfahren 648
29.1 Grundlagen elektrophoretischer Verfahren 657
29.2 Durchführung elektrophoretischer Verfahren 659
29.3 Anwendungen elektrophoretischer Verfahren 663
V
G. G. Willems
Thermische Analysenmethoden
Verzeichnis der Symbole 668
30 Grundlagen der thermischen Analysenmethoden 669
30.1 Einführung in die Methoden 669
30.2 Grundprinzipien 671
30.3 Modifikationsübergänge und Thermodynamik 673
31 Thermogravimetrie 676
31.1 Grundlagen der Thermogravimetrie 676
31.2 Durchführung der Thermogravimetrie 676
31.3 Anwendungen der Thermogravimetrie 679
32 Thermoanalyse, Differenzthermoanalyse 682
32.1 Grundlagen der Thermoanalyse 682
32.2 Durchführung der Differenzthermoanalyse 682
32.3 Anwendungen der Differenzthermoanalyse 684
33 Kalorimetrische Verfahren 685
33.1 Grundlagen der Dynamischen Differenz-Kalorimetrie 685
33.2 Durchführung der Dynamischen Differenz- Kalorimetrie 686
33.3 Anwendungen der Dynamischen Differenz- Kalorimetrie 688
33.4 Kopplungssysteme 692
Sachregister 695

