Contents

Part I Nanowires

From Ordered Arrays of Nanowires to Controlled Solid State Reactions

Ma	rgit Zacharias and Hong Jin Fan	- 3
1	Introduction	3
2	Methods for nano-patterning	6
3	Selected results – stimulated emission	7
4	Nanotubes based on Kirkendall diffusion and solid state reactions	8
5	Summary	11
6	Acknowledgement	12
Ref	erences	12

Growth Methods and Properties of High Purity III-V Nanowires by Molecular Beam Epitaxy

D.	Spirkoska, C. Colombo, M. Heiß, M. Heigoldt, G. Abstreiter, and	
Α.	Fontcuberta i Morral	13
1	Introduction	13
2	Experimental	14
3	Selective area epitaxy	14
4	Conditions leading to group III assisted growth of nanowires	17
5	Structural and optical properties	19
6	Potential for future structures and devices	21
7	Conclusions	23
8	Acknowledgements	23
Re	ferences	23
Siı	mple Ways to Complex Nanowires and Their Application	
$M \epsilon$	ady Elbahri, Seid Jebril, Sebastian Wille, and Rainer Adelung	27
1	Introduction	27
2	Experimental	28

3	Results and discussion	31
4	Conclusion	35
5	Acknowledgement	37
Refe	erences	37

ZnO Nanostructures: Optical Resonators and Lasing

Klaus Thonke, Anton Reiser, Martin Schirra, Martin Feneberg,	
Günther M. Prinz, Tobias Röder, Rolf Sauer, Johannes Fallert,	
Felix Stelzl, Heinz Kalt, Stefan Gsell, Matthias Schreck, and	
Bernd Stritzker	9
1 Introduction	9
2 Lasing in nanostructures 4	0
3 Single ZnO pillars as nano-resonators 4	4
4 Laser-activity of single ZnO pillars 5	1
5 Summary and outlook 5	4
6 Acknowledgements 5	5
References	5

Waveguiding and Optical Coupling in ZnO Nanowires and Tapered Silica Fibers

Tob	vias Voss	57
1	Introduction	57
2	Experiment	58
3	Results and discussion	58
4	Conclusions	63
5	Acknowledgements	63
Ref	erences	64

Part II Quantum Dots and Nanoparticles

Electrically Driven Single Quantum Dot Emitter Operating at Room Temperature

Tilmar Kümmell, Robert Arians, Arne Gust, Carsten Kruse, Sergey	
Zaitsev, Detlef Hommel, and Gerd Bacher 6	7
1 Introduction	7
2 Quantum dots optimized for RT emission	8
3 Electrically driven single quantum dot emitter 7	3
4 Summary	6
5 Acknowledgements	7
References	7

Silicon Nanoparticles: Excitonic Fine Structure and Oscillator Strength

Cedrik Meier, Stephan Lüttjohann, Matthias Offer, Hartmut Wiggers,	
and Axel Lorke	79
1 Introduction	79
2 Experimental details 8	30
3 Results and discussion 8	30
4 Conclusion	39
5 Acknowledgments 8	39
References	39

Intrinsic Non-Exponential Decay of Time-Resolved Photoluminescence from Semiconductor Quantum Dots

Jan	Wiersig, Christopher Gies, Norman Baer, and Frank Jahnke 91
1	Introduction
2	Time-resolved photoluminescence
3	Correlations
4	Cluster expansion method
5	Numerical results: non-exponential PL decay
6	Numerical results: excitation-intensity dependence
7	Conclusion
8	Acknowledgments
Refe	erences

Electrical Spin Injection into Single InGaAs Quantum Dots

Michael Hetterich, Wolfgang Löffler, Pablo Aßhoff, Thorsten Passow,
Dimitri Litvinov, Dagmar Gerthsen, and Heinz Kalt103
1 Introduction
2 Initialization and readout of spins in single dots
3 Spin loss mechanisms and device optimization
4 Time-resolved measurements
5 Conclusions
6 Acknowledgements
References

Part III Spin and Magnetism

Spintronic and Electro-Mechanical Effects in Single-Molecule Transistors

Maarten R. Wegewijs, Felix Reckermann, Martin Leijnse, and Herbert
<i>Schoeller</i>
1 Introduction
2 Mixed-valence dimer transistor
3 Transport spectroscopy
4 Acknowledgement
References

Transport in 2DEGs and Graphene: Electron Spin vs. Sublattice Spin

Maxim Trushin and John Schliemann
1 Introduction
2 Derivation of the kinetic equation
3 2DEG with spin-orbit coupling
4 Transport in graphene
5 Conculsion remarks
References

Spin Dynamics in High-Mobility Two-Dimensional Electron Systems

Tob	ias Korn, Dominik Stich, Robert Schulz, Dieter Schuh, Werner
Weg	scheider, and Christian Schüller
1	Introduction
2	Theory
3	Sample structure and preparation147
4	Measurement techniques
5	Experimental results
6	Summary
7	Acknowledgements
Refe	erences

Magnetization Dynamics of Coupled Ferromagnetic-Antiferromagnetic Thin Films

	0	
Jeff	rey McCord	7
1	Introduction	$\overline{7}$
2	Magnetization dynamics	8
3	Statics and dynamics of exchange biased F/AF films16	0
4	F/AF/F structures below the onset of exchange bias	3
5	Conclusions	8
6	Acknowledgements	8
Refe	\check{e} rences \check{b}	8

Magnetic and Electronic Properties of Heusler Alloy Films Investigated by X-Ray Magnetic Circular Dichroism

Har	ns-Joachim Elmers, Andres Conca, Tobias Eichhorn, Andrei
Glo	skovskii, Kerstin Hild, Gerhard Jakob, Martin Jourdan, and
Mic	hael Kallmayer
1	Introduction
2	Experimental
3	Martensitic phase transition in Ni_2MnGa films
4	Interface properties of Heusler compound films
5	Summary
6	Acknowledgements
Refe	erences

Coherent Spin Dynamics in Nanostructured Semiconductor-Ferromagnet Hybrids

Pat	ric Hohage, Jörg Nannen, Simon Halm, and Gerd Bacher
1	Introduction
2	Samples and experiment
3	Free vs. localized spin precession in a semiconductor
4	Spin dynamics in ferromagnet-semiconductor hybrids
5	Summary
6	Acknowledgements
Ref	erences

Part IV Organic Materials and Water

Coupling of Paramagnetic Biomolecules to Ferromagnetic Surfaces

Hei	ko Wende	99
1	Introduction	99
2	Experimental details	00
3	Results and discussion	00
4	Summary	05
5	Acknowledgements	96
Refe	erences	06

Band Alignment in Organic Materials

	0	
F.	Flores, J. Ortega ¹ and H. Vázquez)7
1	Introduction)7
2	The CNL in the IDIS model	0
3	The IDIS model at MO interfaces	2
4	IDIS model for OO interfaces	4
5	Results and discussion	4
6	Conclusions	17
7	Acknowledgements	17
Re	ferences	17

Organometallic Nanojunctions Probed by Different Chamietrics: Thermo, Photo, and Machano, Chamistry

Chemistries. Thermo, Thoto, and Mechano-Chemistry
Martin Konôpka, Robert Turanský, Nikos L. Doltsinis, Dominik Marx,
and Ivan Štich
1 Introduction
2 Thermo- and Mechano-chemistry of copper-ethylthiolate junctions 220
3 Mechanically and opto-mechanically controlled azobenzene (AB)
switch based on AB-gold break-junction
4 Conclusions
5 Acknowledgements
References

When It Helps to Be Purely Hamiltonian: Acceleration of Rare Events and Enhanced Escape Dynamics Dirk Hennig, Simon Fugmann, Lutz Schimansky-Geier, and 1 23 4 5 6

Liquid Polyamorphism and the Anomalous Behavior of Water

Н.	E. Stanley, S. V. Buldyrev, SH. Chen, G. Franzese, S. Han,
P.	Kumar, F. Mallamace, M. G. Mazza, L. Xu, and Z. Yan
1	Background
2	Understanding "static heterogeneities"
3	Understanding "dynamic heterogeneities"
4	Hamiltonian model of water
5	Outlook
Ref	erences

Part V Dynamical Effects, Rectification and Nonlinearities

Terahertz Detection of Many-Body Signatures in Semiconductor Heterostructures

Sangam Chatterjee, Torben Grunwald, Stephan W. Koch, Galina
Khitrova, Hyatt M. Gibbs, and Rudolf Hey
1 Introduction
2 Experimental detail
3 Data analysis
4 Intra-excitonic 1s-2p transition in GaAs/(AlGa)As quantum wells $\ldots 274$
5 Intra-excitonic 1s-2p transition in (GaIn)As/GaAs quantum wells $\ .. 276$
6 Acknowledgements
References

Theory of Ultrafast Dynamics of Electron-Phonon Interactions in Two Dimensional Electron Gases: Semiconductor Quantum Wells, Surfaces and Graphene

Ma	rten Richter, Stefan Butscher, Norbert Bücking, Frank Milde,
Car	rsten Weber, Peter Kratzer, Matthias Scheffler, and Andreas Knorr 281
1	Introduction
2	Theoretical framework
3	Phonon-induced relaxation dynamics at the silicon (001) 2×1
	surface

4	Scattering response and spatiotemporal wavepackets in quantum
	cascade lasers
5	Non-equilibrium phonon dynamics in graphene
6	Terahertz light emission
7	Summary
8	Acknowledgement
Ref	erences

Optical Microcavities as Quantum-Chaotic Model Systems: Openness Makes the Difference!

-	
Ma	rtina Hentschel
1	Introduction
2	Deviations from ray-wave correspondence
3	Correcting ray optics by wave effects: Goos-Hänchen shift and
	Fresnel filtering
4	Outlook: non-Hamiltonian dynamics in quantum-chaotic model
	systems
5	Acknowledgements
Ref	erences

Nonlinear Transport Properties of Electron Y-Branch Switches

Lukas Worschech, David Hartmann, Stefan Lang, D. Spanheimer,	
Christian R. Müller, and Alfred Forchel	05
1 Introduction	05
2 Fabrication techniques	06
3 Quantum capacitance and self-gating	07
4 Self-gating in a Y-branch switch at room temperature	08
5 The Y-branch as logic device	12
6 Acknowledgements	15
References	15

Rectification through Entropic Barriers

Gerl	nard Schmid, P. Sekhar Burada, Peter Talkner, and Peter Hänggi 317
1]	Introduction
2	Diffusion in confined systems
3 [Transport in periodic channels with broken symmetry
4 (Conclusions
5	Acknowledgements
Refe	rences

Part VI Characterization of Materials and Devices

Microstructure Tomography – An Essential Tool to

Un	derstand 3D Microstructures and Degradation Effects
Ale	xandra Velichko and Frank Mücklich
1	Introduction
2	Basic characteristics of the microstructure
3	Determination of the 3D grain size distribution from 2D
	micrographs
4	Analysis of the 3D tomographical images
5	Conclusions
Ref	erences

Profiling of Fiber Texture Gradients by Anomalous X-ray Diffraction

М.	Birkholz, N. Darowski and I. Zizak
1	Why are texture profiles of interest?
2	Conceptual approach
3	Experiments and results
4	Conclusions
5	Acknowledgements
Ref	erences

Film Production Methods in Precision Optics

	▲	
Har	as K. Pulker	3
1	Introduction	3
2	PVD-methods	4
3	Thin film properties	4
4	Conclusions	8
Ref	erences	9

Advanced Metrology for Next Generation Transistors

Ala	<i>in C. Diebold</i>	
1	Introduction	
2	Optical models for high K	
3	Optical model for metal films	
4	Charge pumping based capacitance – voltage measurements	
5	Optical measurement of charge trapped in high k and interface 378	
6	Measurement of ultra-thin SOI and observation of quantum	
	confinement	
7	Conclusions	
8	Acknowledgements	
Ref	erences	
Index		