Contents

	Preface	IX
	Acknowledgements	XI
	References	XIII
1	Micromechanical experiments	1
1.1	Micromechanisms of fracture in Al/SiC composites	2
1.1.1	Experimental procedure	2
1.1.2	Results of experiments and analysis	3
1.2	In-situ observation of damage evolution and fracture in AlSi cast alloys	14
1.2.1	Failure mechanisms of ductile materials	14
1.2.2	Experimental procedure	16
1.2.3	Experimental observations	18
1.2.4	Analysis of results	23
1.3	Micromechanisms of damage initiation and growth in tool steels	29
1.3.1	Micromechanisms of damage initiation in tool steels	29
1.3.2	Condition of failure of primary carbides in tool steels	33
2	Micromechanical simulation of composites	37
2.1	Embedded unit cells	42
2.1.1	Model formulation	44
2.1.2	Systematic studies with self-consistent embedded cell models	54
2.2	Multiphase finite elements	65
2.2.1	3D multiphase finite element method	65
2.2.2	Multiphase finite element method and damage analysis	76
2.3	Automatic generation of 3D microstructure-based finite element models	89
2.3.1	Idealized microstructures of particle reinforced composites:	89
	multiparticle unit cells with spherical inclusions	
2.3.2	Step-by-step packing approach to the 3D microstructural model	110
	generation and quasi-static analysis of elasto-plastic behavior of	
	composites	
3	Simulation of damage and fracture	127
3 3.1	Simulation of damage and fracture Crack growth in multiphase materials	127 129

3.1.2	Micromechanics of deformation in multiphase materials	131 138
3.2.1	Numerical modelling of damage and fracture in Al/SiC	138
	composites: element removal method	1.4.4
3.2.2	FE analysis of fracture of WC-Co alloys: microvoid growth	144
3.2.3	micromechanical simulation of crack growth in WC/Co using embedded unit cells	157
3.3	Damage and fracture of tool steels	164
3.3.1	Modeling of crack propagation in real and artificial	164
	microstructures of tool steels: simple microstructures	
3.3.2	FE models of crack propagation tool steels: comparison of techniques and complex microstructures	184
3.4	Interface fracture: elastic and plastic fracture energies of	203
	metal/ceramic joints	
3.4.1	Concept of modelling	203
3.4.2	Results	205
4	Complex, graded and interpenetrating microstructures	213
4.1	Interpenetrating phase materials: matricity model and its applications	215
4.1.1	Matricity model approach	215
4.1.2	Some applications of the matricity model	227
4.2	Graded materials: mesoscale modelling	240
4.2.1	Multilayer model and functionally graded finite elements:	240
4.2.2	Graded multiparticle unit cells: damage analysis of metal matrix composites	248
4.2.3	Voxel-based FE mesh generation and damage analysis of composites	275
4.3	Material with structure gradient for milling applications:	299
	modelling and testing	
5	Atomistic and dislocation modelling	311
5.1	Embedded atom potential for Fe-Cu interactions	313
5.1.1	Interatomic potentials for the pure components	314
5.1.2	Results for the Fe-Cu interaction	315
5.2	Atomistic simulations of deformation and fracture of α -Fe	323
5.2.1	Model and method	323
5.2.2	Results: stress-strain curves and fracture patterns	326
5.3	Atomistic study of void growth in single crystalline copper	342
5.3.1	Modelling approach	343
5.3.2	Results: influence of the crystal orientation of void growth	349
5.4	Atomic scale modelling of edge dislocation movement in the a-Fe-Cu system	363
5.4.1	The movement of an edge dislocation hitting a Cu precipitate	366

5.4.2	Derivation of dispersion strengthening from modelling	371
5.5	Molecular dynamics study on low temperature brittleness in tungsten	375
5.5.1	A combined model of molecular dynamics with micromechanics	377
5.5.2	Transformation from an atomistic dislocation to an elastic dislocation	379
5.5.3	Simulation of a brittle fracture process in tungsten single crystals	382
5.6	Simulation of the formation of Cu-precipitates in steels	395
5.6.1	Monte Carlo simulations	396
5.6.2	Simulation results: formation and growth of precipitates at different temperatures	401
5.7	Atomistic simulation of the pinning of edge dislocations	412
5.7.1	Molecular dynamics simulations for the analysis of the interaction of dislocations and precipitates	413
5.7.2	Determination of critical resolved shear stresses	414
	Index	419