Table of Contents

Part I Introduction, Conception and the Importance of Avalanche Research				
1	Int	$_{ m roduct}$	ion	3
	1.1	Motiv	ration	3
	1.2	Goals	, Methods and Structure	8
		1.2.1	Goals	8
		1.2.2	Methodology	9
		1.2.3	Structure	10
	1.3	Neces	sities for Avalanche Studies	14
		1.3.1	Snow Avalanche Hazards and Fatalities	15
		1.3.2	Debris and Mud Flows, Pyroclastic Flows and Lahars .	17
		1.3.3	International Scientific Activities	24
	1.4	A His	tory of Avalanche Research	26
		1.4.1	Early History	27
		1.4.2	Modern History	27
2	Gra	nular	Avalanches: Definition, Related Concepts	
	and	l a Re	view	47
	2.1	The C	Complexity of Granular Materials	47
	2.2	Appli	cations of Granular Flows	48
		2.2.1	Chemical Process Engineering	48
		2.2.2	Geophysical Flows	49
	2.3		active Properties of Granular Materials	49
		2.3.1	Single-phase and Multi-phase Flows	50
		2.3.2	Dilatancy	51
		2.3.3	Cohesion	53
		2.3.4	Lubrication	54
		2.3.5	Fluidisation	55
		2.3.6	Unlubricated Sliding	57
		2.3.7	Segregation, Inverse Grading and the Brazil Nut Effect	60
	2.4		ılar Avalanches	62
		2.4.1	Definition	62
		2.4.2	Pattern Formation by Granular Avalanches	65

XVIII Table of Contents

	2.5	Snow Avalanche Regions, Formation and Dynamics	72
		2.5.1 The Home of Natural Snow Avalanches	72
		2.5.2 Topographic Conditions	73
		2.5.3 Snowpack and Weather Conditions	74
		2.5.4 Size and Speed of Snow Avalanches	76
		2.5.5 Avalanche Dynamics	77
	2.6	Types of Granular Avalanches	79
		2.6.1 Flow Avalanches	79
		2.6.2 Powder Avalanches	80
			85
	2.7		88
			88
		2.7.2 Stress Generating Mechanisms	90
			91
			92
		·-	94
	2.8		96
			97
		2.8.2 Voellmy's Pioneering Work	
		2.8.3 Experimental Data	
		2.8.4 Necessity for a New Model	110
		2.6.1 Receptify for a few model	
 Pai	·t II		
		A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies	
	ling	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies	5
Slic	ling	A Continuum Mechanical Theory for Dense Avalanches	115
Slic	ling A C	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115
Slic	A C	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1	115 115 117
Slic	A C 3.1 3.2	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123
Slic	A C 3.1 3.2	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123
Slic	A C 3.1 3.2	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125 130
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	1115 1115 1117 1123 1123 1125 1130 1131
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	1115 1115 1117 1123 1123 1125 1130 1131
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	1115 1115 1117 1123 1123 1125 1130 1131
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	1115 1115 1117 1123 123 125 130 131 133 135
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	1115 1115 1117 1123 1123 1125 1130 1131 1133 1135
Slic	A C 3.1 3.2 3.3	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125 130 131 133 135
Slic	A C 3.1 3.2 3.3 3.4	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	s 1115 1115 1117 1123 1123 1125 1130 1131 1133 1135 1140 1141
Slic	A C 3.1 3.2 3.3 3.4	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125 130 131 133 135 140 141
Slic	A C 3.1 3.2 3.3 3.4	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125 130 131 133 135 140 141 145 145
Slic	A C 3.1 3.2 3.3 3.4	A Continuum Mechanical Theory for Dense Avalanches Down Non-Trivial Topographies Continuum Mechanical Theory for Granular Avalanches 1 General Introduction	115 115 117 123 123 125 130 131 133 135 140 141 145 145

		Table of Contents	XIX
	3.6	Avalanches with Erosion and Deposition	152
		3.6.1 Coordinate System	153
		3.6.2 Accumulation and Deposition	154
		3.6.3 The Model Equations	
	3.7	Granular Flows in Rotating Drums	
		3.7.1 Solid-Like and Fluid-Like Regions	
		3.7.2 Coordinate System	
		3.7.3 Governing Equations in a Solid Rotating Body	
		3.7.4 Interfacial Conditions and Scalings	
		3.7.5 Governing Equations in the Avalanche Region	
	3.8	Summary	165
4	Ava	lanches in Arbitrarily Curved and Twisted Channels	167
	4.1	Motivation	
	4.2	The Essence of the New Theory	
	4.3	General Orthogonal Coordinate System	
	4.4	Non-Dimensional Equations	
		4.4.1 Components of the Gravitational Acceleration	
		4.4.2 Balance Equations	
		4.4.3 Kinematic Surface Conditions	
		4.4.4 Traction-Free Condition at the Free Surface	
		4.4.5 The Coulomb Sliding Law at the Base	
	4.5	Depth Integration	
	4.6	Ordering	
	4.7	Closure	
	4.8	Flow Profile	
	4.9	The Model Equations in Conservative Form	198
		4.9.1 Avalanche Motions Down Curved	
		and Twisted Channels	
		4.9.2 The Importance of the New Theory	
		4.9.3 The Standard Form of the Differential Equations	
		4.9.4 Characteristic Speeds and Critical Flow	
	4.10	Erosion and Deposition for the Full Set of Equations	
		4.10.1 Inclusion of Erosion and Deposition	
		4.10.2 Functional Relation for Erosion and Deposition	
	4.11	Discussion	
		4.11.1 Summary and Embedding of Earlier Models	207
		4.11.2 The Orthogonal Complex	
		vs. the Orthogonal General System	
	4.12	Concluding Remarks and Future Outlook	210

5	Exa	ct and Semi-Exact Solutions of the Model Equations 213
	5.1	Solutions of the Model Equations
		5.1.1 A Complete Analytical Solution
		5.1.2 Particular Solutions
		5.1.3 Numerical Solutions
	5.2	One-Dimensional Similarity Solutions
		5.2.1 One-Dimensional Flow Down Inclined Planes 215
		5.2.2 Flow Over an Arbitrarily Curved and Twisted Channel 224
		5.2.3 Moderately Curved Beds
		5.2.4 Variable Bed Friction
		5.2.5 Variable Bed Friction,
		Curved Bed and Voellmy Drag 249
	5.3	Two-Dimensional Similarity Solutions
6	Exa	ct Solutions for Flow Avalanches in Rotating Drums 265
	6.1	A Simple Exact Solution for Steady Flow in a Rotating
		Drum Without Erosion and Deposition
		6.1.1 Coordinate System, Geometry
		of the Drum and the Moving Mass
		6.1.2 Avalanche Depth Determined Without Wall Friction 267
		6.1.3 Avalanche Depth Determined by Including
		Wall Friction
	6.2	An Exact Solution for Steady Flow in a Slowly Rotating
		Drum with Erosion and Deposition
		6.2.1 A Steady Flow Avalanche
	<i>c</i> o	6.2.2 An Exact Solution
	6.3	Mixing in a Rotating Drum
		6.3.1 Particle Paths
	C 1	6.3.2 Circuit Time
	6.4	An Alternative Model Describing the Transverse Flow
		and Mixing of Granular Material in a Rotating Cylinder 282 6.4.1 Model
		6.4.2 Experiments
		6.4.3 Results and Discussion
	6.5	Concluding Remarks
	0.0	Concluding Remarks
Par	t III	Shock Capturing Numerical Methods
		nulations of Free Surface Flows of Shallow
Ava	lanc	hes Sliding Over Curved and Twisted Channels
7	Cla	ssical and High Resolution Shock-Capturing
		merical Methods
	7.1	Classical Eulerian and Lagrangean Approaches
	•	7.1.1 EULERian Approach
		7.1.2 LAGRANGEAN Approach

		Table of Contents	XXI
	7.2	Some Traditional Numerical Methods	307
		7.2.1 First-Order Schemes	307
		7.2.2 Second-Order Schemes	309
	7.3	Appropriate Numerical Modelling	
	7.4	Modern Numerical Methods	
		7.4.1 Total Variation Diminishing Method	
		7.4.2 Second-Order TVD Schemes	
		7.4.3 Cell Reconstruction with Slope Limiters	
		7.4.4 Non-Linear Conservation Law and TVD Methods	
		7.4.5 TVD LAX-FRIEDRICHS Method	
		7.4.6 Modified TVDLF Scheme	
	7.5	NOC Schemes	
	7.6	Alternative Numerical Schemes	
	7.7	Summary	328
8	Two	o-Dimensional Shock-Capturing Schemes	
•		Avalanching Flow	329
	8.1	The Two-Dimensional Lagrangean Techniques	
	8.2	The Two-Dimensional NOC Schemes	
	U	8.2.1 Description	
		8.2.2 Predictor Step	
		8.2.3 Corrector Step	
	8.3	Two-Dimensional Shock-Capturing Methods Applied	
		to the Extended Avalanche Equations	338
	8.4	Summary	341
9	Ava	lanche Simulations over Curved and Twisted Channels	343
	9.1	Performance of Various Numerical Schemes	
		9.1.1 Numerical Performances	344
	9.2	Effects of Topographic Variations	350
		9.2.1 Constant Cross-Slope Curvature	350
		9.2.2 Variable Cross-Slope Curvature	356
	9.3	Superimposed Basal Topography	360
	9.4	Avalanches Sliding Down Curved and Twisted Channels	363
		9.4.1 Flows Through Uniformly Curved	
		and Twisted Channels	364
		9.4.2 Avalanching Flows Through Non-Uniformly Curved	
		and Twisted Channels	
	9.5	Sensitivity to Phenomenological Parameters	
	9.6	Pressure Dependence of the Friction Angles	
		9.6.1 Mass-Dependent Bed Friction Angle	
		9.6.2 Scale Effects Due to the Pressure Dependence of $\delta \dots$	
	9.7	Formation of Shocks	
	9.8	Summary	385

Part IV Experimental Validation of the Theoretical Prediction with Different Measurement Techniques

10	Experimental Findings and a Comparison
	with the Theory
	10.1 Why Are Laboratory Experiments Performed?
	What Can be Inferred from Them?
	10.2 Chute Flow Experiments
	10.2.1 Experimental Set-Up
	10.2.2 Experimental Procedure
	10.2.3 Measurement of Phenomenological Coefficients 399
	10.2.4 Results
	10.2.5 Variable Bed Friction Angle (Position-Dependent) 409
	10.2.6 Chutes with a Convex Curved Bump 411
	10.2.7 Limitation of the Model
	10.3 Avalanche Flow Without Side Confinement 417
	10.3.1 Experimental Set-Up
	10.3.2 Rolled Surfaces
	10.4 Channelised Avalanche Flows
	10.5 Avalanches Across Irregular Three-Dimensional Terrain 436
	10.5.1 The Table-Top Experiments
	10.5.2 Further Verification of the Model Equations 446
	•
11	Particle Image Velocimetry for Free Surface Flow
	Avalanches
	11.1 Introduction
	11.2 Particle Image Velocimetry Technique 462
	11.2.1 Image Intensity Field
	11.2.2 Cross-Correlation Function
	11.2.3 Spatial Resolution
	11.2.4 Summary of the PIV System
	11.3 Experimental Set-Up for Granular Avalanches
	11.3.1 Transparent Fluids and the Usual PIV Set-Up 467
	11.3.2 Set-Up for Granular Avalanches
	11.3.3 Technical Details
	11.4 Experimental Peculiarities Arising for Granular Materials 468
	11.4.1 General Errors
	11.4.2 Particular Errors for Granular Flows
	11.5 Post-Processing and Evaluation
	11.6 PIV with Multi-Cameras
	11.7 Particle Tracking Velocimetry (PTV) Measuring Technique 475
	11.7 Latricle Tracking velocimetry (LLV) Measuring Technique 475

12		lanche Experiments Using the PIV Measurement				
	Technique 4					
	12.1	Experimental Details	480			
		Measurement of Avalanche Depth Profiles				
	12.3	Validation of the Theory	484			
		12.3.1 Experiments Using Small-Cap and Quartz Particles	484			
		12.3.2 The PIV Measurement and Validation of the Theory	486			
		12.3.3 Evolution of the Avalanche Geometry	490			
		12.3.4 Multi-CCD Cameras and Velocity Shearing	490			
	12.4	Is There a Terminal Velocity on Inclined Planes?	493			
		12.4.1 Background				
		12.4.2 Remarks on Experimental Procedures				
		12.4.3 Results				
		12.4.4 Summary				
	12.5	Concluding Remarks	503			
	4 37					
Pai	rt V	Avalanche Protection and Defence Structures				
13		tection Against Snow Avalanche Hazards				
	13.1	Types of Avalanche Protection				
		13.1.1 Avalanche Initiation and Protective Measures				
		13.1.2 Early Efforts				
	100	13.1.3 Modern Methods of Avalanche Defence and Protection				
	13.2	Avalanche Protection in Different Countries				
		13.2.1 Avalanche Protection in Switzerland				
		13.2.2 Avalanche Protection in France				
		13.2.3 Avalanche Protection in Iceland				
		13.2.4 Snow Avalanche Protection in Austria				
	199	13.2.5 Snow Avalanche Barriers in North America Laboratory Experiments: A Means to Design Defence	918			
	15.5		F10			
		Structures				
		13.3.2 Simulation of Avalanche Protection				
		13.3.3 A Structural Protection Technique by Deflection				
	19.4	Conclusion				
	15.4	Concrusion	520			
14	Sun	nmary and Outlook	529			
	14.1	Knowledge at Present	530			
		14.1.1 Theory	530			
		14.1.2 Numerics				
		14.1.3 Experiments	532			
	14.2	Attempts in Future				
		14.2.1 Application in Nature				
		14.2.2 Application in the Laboratory	535			

XXIV Table of Contents

	Advancing the Numerics	536
14.2.4	More Advanced Measurement Techniques and Experiments	536
${f References}\dots$		539
Name Index .		565
$\operatorname{Index}\ldots\ldots$		571