Inhaltsverzeichnis

17 Grundlagen der Matrizenrechnung 9
17.1 Matrizen und Vektoren 9
17.2 Grundbegriffe zu Matrizen und Vektoren 13
17.3 Addition von Matrizen 16
17.4 Multiplikation einer Matrix mit einem Skalar 19
17.5 Skalares Produkt von Vektoren 20
17.6 Multiplikation von Matrizen 23
17.7 Inverse einer Matrix 32
17.8 Matrizen als spezielle Funktionen 34
17.9 Linearkombinationen von Vektoren 35
18 Lineare Gleichungssysteme 38
18.1 Begriff des linearen Gleichungssystems 38
18.2 Regeln für die Lösung linearer Gleichungssysteme 45
18.3 Lösung eines inhomogenen linearen Gleichungssystems durch vollständige Elimination 48
18.4 Vollständige Elimination bei mehrdeutigen und bei nicht lösbaren Gleichungssystemen 55
18.5 Lösung eines inhomogenen linearen Gleichungssystems mit Hilfe des GAUSSschen Algorithmus 59
18.6 Inversen-Bestimmung mit vollständiger Elimination 63
18.7 Lösung eines inhomogenen linearen Gleichungssystems mit Hilfe der Inversen der Koeffizientenmatrix 68
18.8 Linear abhängige bzw. unabhängige Gleichungen und Vektoren 69
18.9 Rang einer Matrix 73
19 Determinanten 76
19.1 Begriff der Determinanten 76
19.2 Grundlegende Begriffe und Regeln für Determinanten 77
19.3 Berechnung von Determinanten 80
19.4 Wichtige Eigenschaften von Determinanten 83
19.5 CRAMERsche Regel 87
19.6 Inversen-Bestimmung mit Hilfe der adjungierten Matrix 88
20 Grundzüge der linearen Optimierung 92
20.1 Vorbemerkung 92
20.2 Lineare Ungleichungen mit mehreren Variablen 92
20.3 Grafische Einführung in die lineare Optimierung 95
20.4 Maximierungsaufgabe der linearen Optimierung 103
20.5 Die Simplex-Methode 105
20.6 Mehrdeutigkeit und Degeneration 117
20.7 Die Minimierungsaufgabe der linearen Optimierung 121
20.8 Lösung der Minimierungsaufgabe mit der Simplex-Methode 125
20.9 Ergänzende Bemerkungen 129
21 Das Transportproblem 130
21.1 Einführung 130
21.2 Allgemeine Formulierung des Transportproblems 131
21.3 Bestimmung einer Ausgangsbasislösung 133
21.4 Die ,,Stepping-Stone"-Methode 138
21.5 Die Methode der Potentiale 144
21.6 Mehrdeutigkeit und Degeneration 147
21.7 Ergänzende Bemerkungen 149
22 Graphentheorie 153
22.1 Einführung 153
22.2 Wichtige Begriffe und Eigenschaften von Graphen 155
22.3 Kürzeste und längste Wege in Graphen 164
22.4 Markierungsalgorithmen zur Bestimmung kürzester Wege 165
22.5 Matrizenalgorithmen zur Bestimmung kürzester Wege 177
22.6 Flüsse und Schnitte in Graphen 183
22.7 Graphentheoretische Strukturparameter 189
22.8 Anwendungsbeispiele von Graphen 193
Anhang A1: Lösungen der Übungsaufgaben 197
Anhang A2: Literaturhinweise 223
Anhang A3: Symbolverzeichnis und griechisches Alphabet 224
Stichwortverzeichnis 226

