
HANSER

Inhaltsverzeichnis

Wolfgang H. Müller, Ferdinand Ferber

Technische Mechanik für Ingenieure

ISBN: 978-3-446-42769-3

Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42769-3 sowie im Buchhandel.

Inhaltsverzeichnis

1

1.1	Grun	dbegriffe	
	1.1.1.	ε	
	1.1.2	Einteilung der Kräfte, das Schnitt- und das Wechselwirkungsprinzip	••••
1.2	Kräft	e in einem Angriffspunkt	(
	1.2.1	Zusammensetzen von Kräften	(
	1.2.2	Zerlegen von Kräften in der Ebene: Komponentendarstellung	9
	1.2.3	Gleichgewicht von Kräften in einem Angriffspunkt	. 12
	1.2.4	Zentrale Kräftegruppe im Gleichgewicht: Haltekraft auf schiefer Ebene	. 14
		Lösung im kartesischen Koordinatensystem	. 14
		Vektorielle Berechnung der Haltekraft	. 1:
	1.2.5	Zentrale Kräftegruppe im Gleichgewicht: Verkettete Pendelstäbe	. 1:
		Lösung im kartesischen Koordinatensystem	. 1:
		Stabkräfte vektoriell berechnet	. 1′
	1.2.6	Zentrale Kräftegruppen im Raum und Vergleich mit zwei Dimensionen	. 18
1.3	Allger	neine Kräftesysteme: Gleichgewicht des starren Körpers	. 20
	1.3.1	Moment beliebig verteilter Kräftegruppen in der Ebene	
		Zwei zueinander parallele Kräfte	
		Definition des Momentes einer Kraft	. 23
		Zum Gesamtmoment ebener Kräftesysteme	. 24
		Kräfte an einer Sechseckscheibe	. 24
		Beispiel: Das Moment eines Kräftepaares	. 24
	1.3.2	Gleichgewichtsbedingungen für beliebige Kräftesysteme in der Ebene.	. 26
	1.3.3	Gleichgewicht illustriert an einem System von Pendelstäben	. 28
	1.3.4	Vektorielle Deutung des Momentes	. 29
		Definition des Momentenvektors	. 29
		Bemerkungen zum Kreuzprodukt von Vektoren	. 3(
		Ein Quader unter dem Einfluss äußerer Kräfte	. 33
	1.3.5	Allgemeine Kräftegruppen im Raum	. 34
		Zusammenfassung der Gleichgewichtsbedingungen	. 34
		Rahmen im Raum	35
	1.3.6	Grafische Verfahren zur Behandlung allgemeiner 2-D-Kräftegruppen	.37
		Die CULMANNsche Gerade	31

X Inhaltsverzeichnis

		Das Seileck	38			
1.4.	Der S	chwerpunkt	41			
	1.4.1	Schwerpunkt einer Gruppe paralleler Kräfte	41			
	1.4.2	Spezielle Linienkräfte (Streckenlasten): Gleichstrecken- und Dreieckslast	44			
	1.4.3	Massenschwerpunkt eines Volumens				
	1.4.4	Zum Flächenschwerpunkt				
		Flächenschwerpunkt eines Dreiecks				
		Flächenschwerpunkt einer Parabel				
		Flächenschwerpunkt eines Kreises				
	1.4.5	Zum Linienschwerpunkt				
1.5	Lager	·, Trag- und Fachwerke	56			
	1.5.1	Freiheitsgrade, Lager und ihre technische Realisierung	56			
		Einwertige Lager	56			
		Zweiwertige Lager				
		Dreiwertige Lager	57			
	1.5.2	Tragwerke	58			
	1.5.3	Fachwerke	59			
		Definition des idealen Fachwerks	59			
		Prinzipielle Berechnung der Stabkräfte: Knotenpunktverfahren	61			
		Der RITTERsche Schnitt	63			
		Der Cremona-Plan	65			
1.6	Der biegesteife Träger					
	1.6.1	Schnittgrößen – Begriffsbildung	66			
	1.6.2	Zur Berechnung von Schnittgrößen am geraden Balken	68			
		Gerader Balken unter Einzellasten	68			
		Balken auf zwei Stützen unter Einzellast (Dreipunktbiegeprobe)	71			
		Kragträger unter Einzellast und Momentenwirkung	72			
		Zusammenhang zwischen Belastung und Schnittgrößen	73			
		Integration der Differentialgleichungen für Querkraft- und Momentenfläche	74			
		Randbedingungen für die Querkraft- und für die Momentenfläche				
		Übergangsbedingungen für die Querkraft- und für die Momentenfläche				
		Momentenfläche bei komplizierteren Belastungen				
		Ein vergleichendes Beispiel				
	1.6.3	Zur Berechnung von Schnittgrößen am Rahmentragwerk				
	0.0	Der rechtwinklige Rahmen				
		Beliebiger gerader Träger				

			Der stetig gekrümmte Träger — Theorie	87
			Der stetig gekrümmte Träger — ein Halbkreisbogen	89
	1.7.	Reibu	ıngsphänomene	90
		1.7.1	Gleitreibung und Haftreibung.	90
		1.7.2	Reibung an der schiefen Ebene	93
		1.7.3	Spezielle Anwendungen des Reibungsphänomens	96
			Der Pronysche Zaum (Reibungsbremse)	96
			Schraube	98
			Umschlingungsreibung	102
			Seilbremse	104
			Reibung am Keil	107
2	Fest	igkeits	slehre	109
	2.1	Einfü	hrung; Begriffe	109
		2.1.1	Aufgabe der Festigkeitslehre	109
		2.1.2	Beanspruchungsarten	110
		2.1.3	Begriff der Spannung	111
	2.2	Zug-	und Druckbeanspruchung	113
		2.2.1	Zug- und Druckspannung in Bauteilen	113
		2.2.2	Beispiel: Spannungsverteilung in einem konischen Stab	115
		2.2.3	Beispiel: Stab gleicher Festigkeit	116
		2.2.4	Die Längenänderung des Zug- oder Druckstabes	117
		2.2.5	Die Querdehnung des Zug- oder Druckstabes	120
		2.2.6	Verformung statisch bestimmter Stabsysteme	121
		2.2.7	Statisch unbestimmte Stabsysteme	
		2.2.8	Behinderte Wärmeausdehnung	124
	2.3	Schub	beanspruchung und HOOKEsches Gesetz	125
		2.3.1	Spannungen infolge Schublast	125
		2.3.2	Verformung infolge Schublast	125
	2.4	Biege	beanspruchung des Balkens	126
		2.4.1	Biegespannungsformel	126
		2.4.2	Trägheits- und Widerstandsmomente für einfache	100
		2.4.2	Querschnittsformen	
		2.4.3	Satz von Steiner	
		2.4.4	Die Normalspannungen im Balken infolge Querkraftbiegung	134

XII Inhaltsverzeichnis

 2.5.1 Ingenieurformel für die Schubspannungen	138 140 142
2.5.3 Schubspannungen im geschweißten, geklebten und genieteten Träger	140
Träger	142
	142
2.5.4. 0.1. 1	
2.5.4 Schubmittelpunkt	143
2.6 Die elastische Linie des Biegeträgers (Biegelinie)	-
2.6.1 Die Differenzialgleichung der Biegelinie	143
2.6.2 Beispiel: Der eingespannte Balken	146
2.6.3 Beispiel: Träger auf zwei Stützen	147
2.6.4 Anwendung auf statisch unbestimmte Systeme	149
2.6.5 MOHRsche Analogie; eine praktische, rechnerisch- zeichnerische Methode zur Ermittlung der Biegelinie	150
2.6.6 Wahre Auflager und Ersatzlager sind identisch	151
2.6.7 Schlusslinie als geneigte Gerade	153
2.6.8 Ein Zahlenbeispiel	153
2.6.9 Zusammenfassung: Auffinden der Biegelinie mit Hilfe der MOHRschen Analogie	154
2.6.10 Ermittlung von Verformungen mit Hilfe des Superpositionsprinzips	156
2.6.11 Schiefe Biegung (Begriff der Hauptträgheitsachsen)	157
2.7 Axiale Verdrehung/Torsion	163
2.7.1 Schubspannungen am Kreisquerschnitt	163
2.7.2 Polares Trägheitsmoment für Kreisprofile	
2.7.3 Dünnwandige geschlossene Hohlprofile und dünnwandige offene Profile	
2.7.4 Beliebige offene Profile, dickwandige Hohlprofile	
2.7.5 Verformung infolge Torsion, Verdrehwinkel	
Spezifischer Winkel, Drehfederkonstante	
Darstellung des Torsionsmomentes ($M_{\rm T}$ -Fläche)	
2.8 Zusammengesetzte Beanspruchung	173
2.8.1 Einführung	173
2.8.2 Normalspannungen aus Normalkräften und Biegung	
2.8.3 Schubspannungen aus Querkraft und Torsion	
2.8.4 Begriff des Spannungstensors im ebenen Fall	
2.8.5 Begriff des Spannungstensors im räumlichen Fall	
2.8.6 Der MOHRsche Kreis	
2.8.7 Vergleichsspannungen	

Inhaltsverzeichnis XIII

		2.8.8	Spannungstensor für den Balken	190
	2.9	Stabil	itätsprobleme	196
		2.9.1	Einführung	196
		2.9.2	Ein erstes Stabilitätsproblem	197
		2.9.3	Zur Phänomenologie von Stabilitätsproblemen	198
		2.9.4	Die EULERsche Knickgleichung	198
		2.9.4	Die vier Eulerschen Knicktypen	201
3	Dyn	amik.		205
	3.1	Punkt	tförmige Masse	205
		3.1.1	Kinematik eines einzelnen Massenpunktes	205
			Position, Geschwindigkeit und Beschleunigung im Eindimensionalen	205
			Beispiele zur eindimensionalen Bewegung	
			Position, Geschwindigkeit und Beschleunigung im Raum	
			Koordinatensysteme	216
		3.1.2	Kinetik des Massenpunktes	220
			Die NEWTONschen Gesetze	220
			Dynamik des freien Massenpunktes	221
			Geführte Bewegungen	223
			Bewegungen unter dem Einfluss von Reibungskräften	227
		3.1.3	Der Impulssatz	230
		3.1.4	Energiesatz der Mechanik	233
		3.1.5	Drehimpuls und Momentensatz	238
	3.2	Die D	ynamik von Massenpunktsystemen	238
		3.2.1	Kinematik	238
		3.2.2	Kinetik	240
		3.2.3	Impuls- und Schwerpunktsatz für Massenpunktsysteme	242
		3.2.4	Drehimpulssatz für Massenpunktsysteme	243
		3.2.5	Der Energie- und Arbeitssatz für Massenpunktsysteme	247
		3.2.6	Eine Anwendung des Impuls- und des Energiesatzes:	
			zentrische Stöße zwischen kugelförmigen Massen	248
		3.2.7	Körper mit zeitveränderlicher Masse	251
	3.3	Die D	ynamik des starren Körpers	254
		3.3.1	Starrkörperkinematik	254
			Freiheitsgrade des starren Körpers	254
			Translation des starren Körpers	255

XIV Inhaltsverzeichnis

		Rotation des starren Körpers um eine feste Achse	256
		Allgemeine Bewegung des starren Körpers in der Ebene	258
		Zwei Beispiele zur Kinematik des starren Körpers	261
		Der Momentanpol	264
	3.3.2	Starrkörperkinetik	265
		Einleitende Bemerkungen	265
		Rotation eines starren Körpers um eine feste Achse	265
		Ein Beispiel zur Aufstellung der Bewegungsgleichung von um eine feste Achse rotierenden Körpern	269
		Energie- und Arbeitssatz bei Rotation um eine feste Achse	270
		Weitere Beispiele zur Bewegung starrer Körper: Reibungsbremse und Walze	271
		Analogie zwischen der geradlinigen Bewegung eines Massenpunktes und der Starrkörperrotation um eine feste Achse	274
		Kinetik von ebenen starren Körpern (Scheiben)	275
		Beispiel I zur Starrkörperbewegung von Scheiben	277
		Beispiel II zur Starrkörperbewegung von Scheiben: Die ATWOODsche Fallmaschine	280
		Beispiel III zur Starrkörperbewegung von Scheiben: Das Jo-Jo	281
		Beispiel IV zur Starrkörperbewegung von Scheiben	281
		Impuls-, Arbeits- und Energiesatz bei der Bewegung starrer Körper in der Ebene	284
		Ein Beispiel zum Energiesatz ebener starrer Körper	286
3.4	Schwi	ingungen	288
	3.4.1	Grundbegriffe der Schwingungslehre	
	3.4.2	Freie, ungedämpfte Schwingungen mit einem Freiheitsgrad	
		Bewegungsgleichungen und ihre Lösung.	
		Alternativen und ergänzende Betrachtungen mit Hilfe des Energiesatzes	
		Beispiele für die freie ungedämpfte Schwingung mit einem Freiheitsgrad	
		Federkonstanten	
	3.4.3	Freie, gedämpfte Schwingungen mit einem Freiheitsgrad	
		COULOMBreibung	
		Geschwindigkeitsproportionale Reibung: Der lineare Dämpfer (Dashpot)	301
		Ein komplizierteres Beispiel für eine Schwingung mit Dämpfung	306
	3.4.4	Angefachte Schwingungen	307
		Angefachte Schwingungen ohne Dämpfung	307

			Angefachte Schwingungen mit geschwindigkeitsproportionaler Dämpfung	310
		3.4.5	Schwingungen mit endlich vielen Freiheitsgraden	314
			Motivation und Erinnerung	314
			Bewegungsgleichung der freien, ungedämpften Schwingung mit zwei Freiheitsgraden	315
			Erzwungene Schwingung mit zwei Freiheitsgraden	320
4	Kor	ntinuur	nsmechanik	323
	4.1	Bilanz	zgleichungen der Masse	323
		4.1.1	Bilanzgleichung der Masse in globaler Form	
		4.1.2	Massendichte und Umschreibung der globalen Massenbilanz	
		4.1.3	LEIBNIZsche Regel zur Differentiation von Parameterintegralen und REYNOLDSsches Transporttheorem	326
		4.1.4	Lokale Massenbilanz in regulären Punkten	330
		4.1.5	Alternativschreibweisen der Massenbilanz in regulären Punkten; Endziel des Mechanikers	332
	4.2	Bilanz	zgleichungen des Impulses	334
		4.2.1	Bilanzgleichung des Impulses in globaler Form	334
		4.2.2	Das CAUCHYsche Tetraederargument	337
		4.2.3	Bilanzgleichung des Impulses in lokaler Form	338
		4.2.4	Eine Bemerkung zum REYNOLDSschen Transporttheorem	340
	4.3	Einfa	che Materialgleichungen	342
		4.3.1	Das reibungsfreie Fluid	342
		4.3.2	Das NAVIER-STOKES-Fluid	
		4.3.3	Der linear-elastische HOOKEsche Körper	343
	4.4	Bilanz	zgleichungen des Drehimpulses	348
		4.4.1	Die lokale Bilanz des Drehimpulses	
		4.4.2	Die globale Bilanz des Drehimpulses	
	4.5	Einfü	hrung in die lineare Elastizitätstheorie	
		4.5.1	Der eindimensionale Zugstab neu gesehen	351
		4.5.2	Die Lamé-Navierschen Gleichungen	
		4.5.3	Der axial schwingende Zugstab	
		4.5.4	Die Schwingungsgleichung der Geigensaite	360
		4.5.5	Die Schwingungsgleichung einer Membran	
		4.5.6	Der transversal schwingende Balken	
		4.5.7	Lösungsmethoden I: Das Verfahren von D'ALEMBERT	367
		4.5.8	Die Frage der Randbedingungen	372

XVI Inhaltsverzeichnis

		4.5.9	Lösungsmethoden II: Das Verfahren von BERNOULLI	374
		4.5.10	Zur Äquivalenz der Lösungsverfahren nach D'ALEMBERT	
			und Bernoulli	381
	4.6	Einfüh	nrung in die Hydromechanik	384
		4.6.1	Massenbilanz bei der Rohrströmung	384
		4.6.2	Der hydrostatische Druck	387
		4.6.3	Die Bernoullische Gleichung	388
		4.6.4	Der Auftrieb nach Archimedes	390
5	Ene	rgieme	thoden	393
	5.1	Energ	iebilanzen	393
		5.1.1	Lokale und globale Bilanz der kinetischen Energie	393
		5.1.2	Zum Begriff der inneren Energie	395
		5.1.3	Gesamtbilanz der Energie oder Energieerhaltungssatz	395
		5.1.4	Bilanz der inneren Energie	398
		5.1.5	Energiebilanz bei der Rohrströmung	400
	5.2	Entro	piebilanz und zweiter Hauptsatz	401
		5.2.1	Globale und lokale Entropiebilanz	401
		5.2.2	Die Gibbssche Gleichung	403
		5.2.3	Eine Anwendung der GIBBSschen Gleichung: Gummielastizität vs. HOOKEsches Gesetz	
	5.3	Die Sä	tze von Castigliano, Betti und Maxwell	412
		5.3.1	Potenzialcharakter von Formänderungsenergie, komplementärer Formänderungsenergie, freier Energie und freier Enthalpie	412
		5.3.2	Die Formänderungsenergiedichte linear-elastischer Körper	416
		5.3.3	Komplementäre Formänderungsenergiedichte linear-elastischer Körper	410
		5.3.4	Formänderungsenergiedichte für Balken	
		5.3.5	Formänderungsenergie in der Elastostatik	
		5.3.6	Die Sätze von MAXWELL und BETTI	
		5.3.7	Anwendung der Sätze von BETTI und MAXWELL auf statisch bestin und unbestimmte Systeme	nmte
		5.3.8	Die Sätze von CASTIGLIANO für diskret belastete Systeme	
		5.3.9	Eine Anwendung der Sätze von CASTIGLIANO auf ein statisch bestimmtes System	
	5.4	Enero	iefunktionale und ihre Extrema	
		5.4.1	Eine erste Motivation zur Minimierung von Energieausdrücken	
		5.4.2	Hinführung zur Variationsrechnung	
		- · · · -		

Inhaltsverzeichnis XVII

	5.4.3	Die Eulersche Variationsgleichung	437
5.5	Das Pi	rinzip der virtuellen Verschiebungen (PdvV)	441
	5.5.1	Das PdvV in der elementaren technischen Mechanik	441
	5.5.2	Das PdvV in der höheren technischen Mechanik	443
	5.5.3	Das PdvV vom Standpunkt der Variationsrechnung	446
	5.5.4	Das PdvV – Statik starrer Systeme	448
	5.5.5	Beispiele zum PdvV in der Statik starrer Systeme	449
		Berechnung von Kräften und Momenten	449
		Berechnung von stabilen Lagen	452
		Das Prinzip von TORRICELLI	453
		Der Gerber-Träger	453
	5.5.6	Das PdvV – Statik deformierbarer Systeme	454
	5.5.7	Ein Beispiel zum PdvV in der Statik deformierbarer Systeme	455
	5.5.8	PdvV – Allgemeine Belastungsfälle für HOOKEsche Balken	458
	5.5.9	$PdvV-Die\ N\"{a}herungsmethoden\ nach\ RITZ\ und\ GALERKIN$	462
5.6	Das Pı	rinzip der virtuellen Kräfte (PdvK)	466
	5.6.1	Formulierung des PdvK im Rahmen der elementaren und höheren technischen Mechanik	466
	5.6.2	Das PdvK vom Standpunkt der Variationsrechnung	469
	5.6.3	Beispiele zum PdvK	471
		Verschiebungen in einem statisch bestimmten System	
		Lagerreaktionen in einem statisch unbestimmten System	472
	5.6.4	Eine rezeptmäßige Auswertung des PdvK: das 1-Kraft-Konzept	474
5.7	Dynan	nische Energieprinzipe	478
	5.7.1	Das D'ALEMBERTsche Prinzip in LAGRANGEscher Fassung	478
	5.7.2	Ableitung der Bewegungsgleichung des starren Körpers mit Hilfe de D'ALEMBERTschen Prinzips in LAGRANGEscher Fassung	es
	5.7.3	Ein Beispiel zum D'ALEMBERTschen Prinzip in LAGRANGEscher Fassung	488
	5.7.4	Das HAMILTONsche Prinzip und die LAGRANGEfunktion	490
	5.7.5	Generalisierte Koordinaten	492
	5.7.6	Die EULER-LAGRANGEschen-Bewegungsgleichungen	493
	5.7.7	Beispiel I zu den EULER-LAGRANGEschen Bewegungsgleichungen: Geführte Punktmasse	495
	5.7.8	Beispiel II zu den EULER-LAGRANGEschen Bewegungsgleichungen: Massenpunktsystem mit zwei generalisierten Koordinaten	
	5.7.9	Beispiel III zu den EULER-LAGRANGESCHEN Bewegungsgleichunge Mehrere Punktmassen im Verbund	n: 498
	5.7.10	Beispiel IV zu den EULER-LAGRANGEschen Bewegungsgleichunger Punktmassen und starrer Körper im Verbund	n: 500

XVIII Inhaltsverzeichnis

Hinweise zur	beigefügten CD-ROM	537
Stichwort- ur	nd Namensregister	523
5.7.20	Beispiel II zu den HAMILTONschen Gleichungen: Der 1-D-Massenschwinger	. 522
5.7.19	Beispiel I zu den Hamiltonschen Gleichungen: Wurf im Schwerefeld der Erde	520
5.7.18	Die Hamiltonschen Bewegungsgleichungen	516
5.7.17	Beispiele zu holonom rheonomen Nebenbedingungen	514
5.7.16	Klassifizierung kinematischer Bedingungen	511
5.7.15	Beispiel II zu den Lagrangeschen Bewegungsgleichungen 1. Art	510
5.7.14	Beispiel I zu den LAGRANGEschen Bewegungsgleichungen 1. Art	506
5.7.13	Die LAGRANGEschen Bewegungsgleichungen 1. Art	504
5.7.12	Beispiel VI zu den EULER-LAGRANGEschen Bewegungsgleichungen: Ein nicht konservatives System	503
5.7.11	Beispiel V zu den EULER-LAGRANGEschen Bewegungsgleichungen: Konservative Starrkörperbewegung	501
5.7.11	Beispiel V zu den EULER-LAGRANGEschen Bewegungsgleichungen:	