Contents

Contrib	outing Authors	ix
Introdu	action	xvii
Wolfge	ang Minker, Michael Weber	
	erences	xxi
1		
Assistiv	ve Environments for Successful Aging	1
Abdelse	ılam (Sumi) Helal, Jeffrey King, Raja Bose, Hicham	
EL-Zab	padani, Youssef Kaddourah	
1.	Introduction	1
2.	Assistive Services in the Gator Tech Smart House	3
3.	Technological Enablers for the Gator Tech Smart House	12
4.	Status of the Gator Tech Smart House	24
5.	Conclusion	24
Refe	erences	25
2		
Do Dig	ital Homes Dream of Electric Families?	27
Brian	David Johnson	
1.	Introduction	27
2.	User Experience Group Overview: Understanding People to Build Better Technology	29
3.	Guiding Principles for Global Research and Product	
	Investigation	30
4.	Houses are Hairy: The Need for Experience Design	30
5.	Consumer Experience Architecture in Industry	32
6.	Technology for Humans: A Design Framework	33
7.	Conclusion: How I Learned to Stop Worrying About the Future	
	and Love Science Fiction: A Challenge	38
Refe	erences	39

3		
An Archi	tecture that Supports Task-Centered Adaptation	41
Achilles I	D. Kameas, Christos Goumopoulos, Hani Hagras,	
Victor Co	allaghan, Tobias Heinroth, Michael Weber	
1.	Introduction	42
2.	Ambient Ecologies and Activity Spheres	46
3.	System Architecture	48
4.	Using Ontologies to Support Adaptation	53
5.	Realizing Adaptation Over Long Time Intervals with the Help	
	of a Fuzzy Agent	54
6.	Adaptive User Interaction	59
7.	Conclusion	63
Refere	ences	64
4		
Multimod	dal Presentation of Information in a Mobile Context	67
Christoph	ne Jacquet, Yolaine Bourda, Yacine Bellik	
1.	Introduction	67
2.	Related Work and Objectives	68
3.	The KUP Model	70
4.	Software Architecture	75
5.	Algorithms for Choosing and Instantiating a Modality	76
6.	Implementation and Evaluation	85
7.	Conclusion and Perspectives	91
Notes		92
Refere	ences	92
5		
Classifier	Fusion for Emotion Recognition from Speech	95
Stefan Sc	cherer, Friedhelm Schwenker, Günther Palm	
1.	Introduction	95
2.	Database Overview	97
3.	Approach	99
4.	Experiments and Results	109
5.	Conclusion	114
Notes		115
Refere	ences	115
6		
Understa	nding Mobile Spatial Interaction in Urban Environments	119
Katharin	e S. Willis, Christoph Hölscher, Gregor Wilbertz	
1.	Introduction	119
2.	Approach and Hypothesis	120
3.	Learning from Field Studies	122
4.	Result	126
5.	Discussion	132

vii

Environments 7. Conclusion and Future Work	135 136
7. Conclusion and Future Work	
	40-
References	137
7	
Genetic Algorithm for Energy-Efficient Trees	139
in Wireless Sensor Networks	
Dr. Sajid Hussain, Obidul Islam	
1. Introduction	139
2. Related Work	140
3. Problem Statement	143
4. Genetic Algorithm (GA)	143
5. Simulation	152
6. Conclusion	171
Notes	172
References	172
8	
Enhancing Anomaly Detection Using Temporal Pattern Discovery Vikramaditya R. Jakkula, Aaron S. Crandall, Diane J. Cook	175
1. Introduction	175
2. Temporal Reasoning	177
3. The MavHome Smart Home	179
4. TempAl	185
5. Experimental Findings	190
6. Conclusion and Future Work	192
References	193
9	
Fault-Resilient Pervasive Service Composition	195
Hen-I Yang, Raja Bose, Abdelsalam (Sumi) Helal, Jinchun Xia,	
Carl K. Chang	
1. Introduction	195
2. A Brief Primer on Pervasive Services	197
3. Virtual Sensors	199
4. Efficient Pervasive Service Composition	203
5. Performance Evaluation	208
6. Putting It All Together: A Comprehensive Solution for Faul	t
Resiliency	215
7. Related Work	217
8. Conclusion	220
References	221

1	Λ
1	U

	n – Parametric Urbanism	225
Brian I	Dale, Ioannis Orfanos, Pavlos Xanthopoulos, Gerard Joson	
1.	Introduction	225
2.	Description of Thesis Project	226
3.	Networked Behaviors	227
4.	Informational Experiments	229
5.	Space (in) Formation	235
6.	Distributed Responsive Leisure	241
7.	Conclusion	248
Not	es	249
Refe	erences	249
11		
The To	tality of Space	251
	antelidou	
1.	Introduction	251
2.	A Discontinuity	252
3.	The Course of Architectural Thought	
	in Banking	254
4.	The Course of Banking Spatial Thought	257
5.	Technology's Effect on Banking Spatial Thought	261
6.	The Contemporary Reality of a Bank's Space	267
7.	Space of a Complex System: The Totality of Space	270
8.	Three Factors in the Formation of the Totality of Space	277
9.	Conclusions – A Possible Architectural Response	280
Not	•	282
References		285
10010		200
Index		289